Soliton dynamics for fractional Schrödinger equations
نویسندگان
چکیده
منابع مشابه
Soliton Dynamics for Fractional Schrödinger Equations
We investigate the soliton dynamics for the fractional nonlinear Schrödinger equation by a suitable modulational inequality. In the semiclassical limit, the solution concentrates along a trajectory determined by a Newtonian equation depending of the fractional diffusion parameter.
متن کاملSoliton dynamics in linearly coupled discrete nonlinear Schrödinger equations
We study soliton dynamics in a system of two linearly coupled discrete nonlinear Schrödinger equations, which describe the dynamics of a two-component Bose gas, coupled by an electromagnetic field, and confined in a strong optical lattice. When the nonlinear coupling strengths are equal, we use a unitary transformation to remove the linear coupling terms, and show that the existing soliton solu...
متن کاملSoliton interactions in perturbed nonlinear Schrödinger equations.
We use multiscale perturbation theory in conjunction with the inverse scattering transform to study the interaction of a number of solitons of the cubic nonlinear Schrödinger equation under the influence of a small correction to the nonlinear potential. We assume that the solitons are all moving with the same velocity at the initial instant; this maximizes the effect each soliton has on the oth...
متن کاملSoliton stability criterion for generalized nonlinear Schrödinger equations.
A stability criterion for solitons of the driven nonlinear Schrödinger equation (NLSE) has been conjectured. The criterion states that p'(v)<0 is a sufficient condition for instability, while p'(v)>0 is a necessary condition for stability; here, v is the soliton velocity and p=P/N, where P and N are the soliton momentum and norm, respectively. To date, the curve p(v) was calculated approximatel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applicable Analysis
سال: 2013
ISSN: 0003-6811,1563-504X
DOI: 10.1080/00036811.2013.844793